How to Make a Graph

1. Decide which variable is the one YOU changed. This is your independent variable (manipulated variable). This will be the x -axis (abscissa). The other variable is your dependent variable (responding variable). This will be the y -axis (ordinate).
2. Examine your independent variable's range of values. Decide what scale to number your x-axis in order to fit your range of values. Pick a scale with a $1,2,5$ rule: 1,2 or $5 ; 10,20$ or $50 ; 0.1,0.2$ or 0.5 . Make the range extend across the x -axis as much as possible for a full page graph. Make sure the numbers along the axis are evenly spaced.
3. Examine your dependent variable's range of values. Decide what scale to number your y-axis in order to fit your range of values. Pick a scale with a $1,2,5$ rule: 1,2 or $5 ; 10,20$ or $50 ; 0.1,0.2$ or 0.5 . It does NOT have to be the same scale as the x-axis. Make the range extend up the y-axis as much as possible for a full page graph. Make sure the numbers along the axis are evenly spaced.
4. Label the axes with quantity and unit. Do not just label them "mass" or "temperature". Mass of what? Temperature in what? Examples: "mass of copper in grams" or "temperature of reaction ($\left.{ }^{\circ} \mathrm{C}\right)$ "
5. Plot your data points.
6. Examine the trend of your plotted data points. If the trend is a straight line, use a ruler to make a "best fit" line. If the trend is a curve, draw a smooth line following the trend to make a "best fit" line.
7. If there are two sets of data, repeat the above procedure for the second set using a different color and provide a key.
8. Give your graph a title. Use one of the following two formats:

> "The dependence of y-axis quantity on x-axis quantity" or "The effect of x-axis quantity on y-axis quantity"

Examples of Good and Bad Graphs

All those rules I gave you above are true and are handy to know, but it's usually a bad idea to give rules without showing you what they mean. Below are two examples of graphs. One is a bad graph (which you may be guilty of making) and the other is a good graph (which is what I always make).

A bad graph!

Let's see what's wrong with this graph:

- There's no title. What's it a graph of? Who knows?
- There are no labels on the x or y axis. What are those numbers? Who knows?
- There are no units on the x or y axis. Is this a graph of speed in miles per hour or a graph of temperature in Kelvins? Who can tell?
- Somebody played "connect the dots". This should be a nice straight line which goes through the points or a curve that tends to follow them.

A good graph!

Doesn't the clarity and beauty of this graph just make you want to cry? Well, maybe that's overstating it a little bit, but it sure does make more sense than the first one, doesn't it? I'm starting to mist up right now.*

Graph Checklist

Did you use a real sheet of graph paper?Is your graph large and fills the sheet as much as possible?Does your graph have a title?Are both your axes labeled with quantity and unit?Are both your axes equidistant (equally spaced) starting from zero (0) to the last number?Did you use the $1,2,5$ rule?Are all your data points plotted correctly?Did you draw a "best fit" straight line with a ruler OR draw a smooth curve "best fit" line?If there were two data sets on your graph and therefore two lines, did you provide a color-coded key?Is your graph neat and clean with legible writing?

