

The Activity Series for Single Displacement Reactions

A more active element (higher on the table above) will form an ion and displace the ion of like charge from the compound. The displaced ion will become a neutral element (see diatomic elements below).

	Al + PbCl ₂ \rightarrow ?	Al for	ns cations, and
Predict products:	Al + PbCl ₂ \rightarrow AlCl ₃ + Pb	is more	e active than Pb
Balance:	$2 \text{ Al} + 3 \text{ PbCl}_2 \rightarrow 2 \text{ AlCl}_3 + 3 \text{ Pb}$		

 $Cl_{2} + FeBr_{3} \rightarrow ?$ Predict products: $Cl_{2} + FeBr_{3} \rightarrow FeCl_{3} + Br_{2}$ Balance: $3 Cl_{2} + 2 FeBr_{3} \rightarrow 2 FeCl_{3} + 3 Br_{2}$

Cl forms anions, and is more active than Br

A less active element (lower on the table) cannot displace the ion from the compound, therefore, there will be no reaction.

Predict products:	Pb + AlCl ₃ \rightarrow ? Pb + AlCl ₃ \rightarrow no reaction	Pb forms cations, but is less active than Al	
Predict products:	Br ₂ + FeCl ₃ \rightarrow ? Br ₂ + FeCl ₃ \rightarrow no reaction	Br forms anions, but is less active than Cl	

Diatomic elements:

There are seven elements that exist as diatomic (two atom) neutral molecules:

Br I N Cl H O F

These elements can have a subscript of one if they are an ion or part of a compound, but will pair up (subscript of two) when alone and neutral.

Example: oxygen $O^{2-} \checkmark okay (ion)$ $H_2O \checkmark okay (compound)$ ightarrow interval in the image of the im

When a non-metal ion is being displaced, be sure to check whether or not the neutral element produced is diatomic.